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Overview

e Primary and secondary work objectives
* Bayesian Maximum Entropy overview

e BME process in detail

* Uncertainty assessment

* Interpretive maps for monitoring and

assessment

» Conclusions and questions



Project objectives

e Primarily:
> Develop methodology - accurate & cost effective monitoring
programmes for mandatory compliance assessment
> Geostatistical tool for assessment of historic dataset uncertainty

> Assessment of the spatial representation of water quality based
on historical monitoring data — spatial limit for one monitoring
point

» Additionally:

Generic format

o

o

Regular updating of monitoring programmes

o

Relationships between nutrient status and WFD status

o

Uncertainty in model outputs

o

BME — maps of iso-flushing contours



Bayesian Maximum Entropy
Overview

Mapping of environmental variables taking into account all

available data
Utilises uncertain data

Kriging facilitates interpolation for mapping — not

extrapolation
BME — interpolation and extrapolation in space and time
Posterior PDFs generated throughout spatiotemporal grid

Posterior PDFs fully reflect underlying data — no assumed

Gaussian normal shape — non linear estimator generated



Bayesian Maximum Entropy

* Varying data types:
> Soft data: model output
uncertain historic datasets
> Hard data: recent monitoring data (EPA)

> Background knowledge

3 clearly defined steps:
° Prior: analysis of general data
> Meta-prior: separation of available soft data

° Posterior: integration of previous data



Bayesian Maximum Entropy

* Prior stage:
° Produces a general pdf f.

> Shaped by constraints

* Meta-prior stage:
o Soft probabilistic data

o Soft interval data

* Posterior stage:
> Update general pdf



Bayesian Maximum Entropy:

Prior stage

* Prior PDF of the form f; = e#*

» g refers to the vector of general knowledge equations
* Mo and matrix of y values determined by constraints

e Constraints determined by:
o Statistical moments (Mean, Covariance,Variogram)

° Physical laws - site knowledge

e Solution to prior pdf:

o Substitution of unsolved prior pdf equation into general
knowledge equations

> Solve for values of pyand matrix of p



Bayesian Maximum Entropy:
Prior stage

e Prior knowledge — general knowledge equations
e Spatiotemporal random field theory:

> Grid definition: Pmap = (P1» P2+ +--Prw Pi)
° Random variables:  x,, = (X}, X5, - X X))

> Realisations: Xmap = (X15 X2+ -+ Xerwr Xio)-

* General knowledge equations:
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Bayesian Maximum Entropy:
Prior stage

* General knowledge equations:
H[:’jwru} = Gcf[.-}.'rz_—-:gpﬂ'ﬂ;_--:g;.: _.F.;]

° h, - terms representing statistical moments: mean, covariance,
variogram, third order moments of data

o

|5t order statistical moment: mean

o

2nd order statistical moment: covariance (x, — i )(x, — X,
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° g, - afunction involving a realisation at the grid point in question

(¢]

Realisation corresponding to It order moment ¥;

o

Realisation corresponding to 2" order moment ¥.
P g i Ak

* Process repeated for each constraint type at each
spatiotemporal grid location



Bayesian Maximum Entropy:
Entropy Maximisation

Entropy = potential information

Knowledge in prior PDF maximised

Inverse relation between information content and probability
Info, [f,ﬁcp] = !&g{PT&bG [f,ﬁcp]}_i = —E&g{F?&bG [f,ﬁcp]}

Log scale limits extent of information measure to 10

Maximisation of following expression:

M= J dy £ () log f2(x)

Expression maximised by solving the Euler Lagrange
equation:
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Bayesian Maximum Entropy:
Prior stage

e Empirical results or physical laws add to a priori
knowledge

e Can provide additional structure to general knowledge
equations

* Soil moisture X and rainfall Y given by:

3
nZ,5-X(p) = —nX(p) + kV*X(p) +Y(p)

° |5t order knowledge equation:

hy = nZ,—X(p) gy = J dy(—ny + kxV)fz () +m,

> 2" order knowledge equation:
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Bayesian Maximum Entropy:
Meta-prior stage

e Available data: Hard or soft?

> Hard data: Parameter values returned
from lab analysis, using the best
current practice

° Soft data: Historic data (less accurate)
model output data (interval
data), probabilistic data (using
probe measurements)



Bayesian Maximum Entropy &
DIVAST

e Depth integrated velocity and solute transport model

e Developed by R.A. Falconer at the University of Bradford,
U.K.

e Applicable to shallow well mixed coastal and estuarine water
bodies

o 2-D finite difference model

> Hydrodynamic module:
Navier-stokes equations
Yields water currents & elevations

> Water quality & solute transport module:

Advection-diffusion equations

Salinity, BOD, organic, ammoniacal and nitrate nitrogen, DO, chlorophyll g,
organic phosphorus and orthophosphate



Bayesian Maximum Entropy & DIVAST
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Bayesian Maximum Entropy:

Posterior stage

e General knowledge based prior PDF updated by Bayesian
Conditionalisation

e PDF updated at each grid point using soft data from 3-5
adjacent grid points in space and time

e Posterior PDF given by the following:
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* See Bayesian Conditionalisation:
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Bayesian Maximum Entropy:
Spatiotemporal estimates

e BMEmode estimate - most likely value at grid pt.
given by:

0
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¢ BMEmean estimate — value minimises the mean
square estimation error:

P = J d e X fu(hn)



BME: Uncertainty assessment

e Standard deviation of posterior PDF at each location is
determined by:
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» Limits of confidence interval depend upon desired
confidence level (mean+/- 1.96*std for 95% Cl)

e Cl centred about BME estimate

e Confidence Interval a suitable proxy for uncertainty
assessment for monitoring purposes

e Uncertainty assessment of estimates — validation soft
datasets



Interpretive maps for monitoring
and assessment

e Risk assessment maps

° Posterior PDFs throughout grid considered
> Each location graded 0 — |

0 — no portion of PDF is above elected limit value
| — entire PDF occurs above the limit value

Intermediate values — grade depending upon proportion of PDF above limit

BME analysis carried out on grades — map generated from results.
> See Modis, K., Vatalis, K., Papantonopoulos, G., Sachanidis, Ch.,

(2010). Uncertainty management of a hydrogeological data set in a

greek lignite basin, using BME. Stoch Environ Res Risk Assess 24:47-
56.



Interpretive maps for monitoring

and assessment
* Modis et al. (2010) Risk assessment maps
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Interpretive maps for monitoring
and assessment

e “Thick” contour maps

e Contours indicative of:
> Parameter concentrations
> Prediction uncertainty

* Map assembled for e.g. 90% Confidence

e Each thick contour - a zone which contains points who’s
confidence interval contains the value of the contour

e Contour thickness indicative of uncertainty

* See Savelieva, E., Demyanov, V., Kanevski, M., Serre, M., Christakos.
G., (2005). BME-based uncertainty assessment of the Chernobyl
fallout. Geoderma 128:312-324.



Interpretive maps for monitoring

and assessment
* Savelieva et. al. (2005) Caesium |37 “thick” contours
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BME: Relevance to monitoring and
potential uses

e Estimation at unknown locations/instances
» Rigorously processes sparse datasets of varying quality
* Lowers estimation uncertainty given sufficient soft data
e Most probable value generated
* Mapping:

o Optimise monitoring programmes

> Guide advanced monitoring
e Cost of monitoring lowered

* Investigate low cost techniques



In conclusion...

 Limited WQ monitoring programme guidance
on design and optimisation

e BME utilises all available data
> Enhances understanding
> Optimise monitoring

 BME routines central to objectives

e Thanks to the Irish EPA for funding provided
under the STRIVE postgraduate research
programme funded under the National
Development Program 2007-201 3
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