Assessment of environmental compliance of waterbodies through integration of monitoring and modelling

Joseph V. McGovern B.E. (Envir. Eng) NUIG Supervisor Dr. Michael Hartnett Environmental Informatics Environmental Change Institute

Overview

- Primary and secondary work objectives
- Bayesian Maximum Entropy overview
- BME process in detail
- Uncertainty assessment
- Interpretive maps for monitoring and assessment
- Conclusions and questions

Project objectives

Primarily:

- Develop methodology accurate & cost effective monitoring programmes for mandatory compliance assessment
- Geostatistical tool for assessment of historic dataset uncertainty
- Assessment of the spatial representation of water quality based on historical monitoring data – spatial limit for one monitoring point

Additionally:

- Generic format
- Regular updating of monitoring programmes
- Relationships between nutrient status and WFD status
- Uncertainty in model outputs
- BME maps of iso-flushing contours

Bayesian Maximum Entropy Overview

- Mapping of environmental variables taking into account all available data
- Utilises uncertain data
- Kriging facilitates interpolation for mapping not extrapolation
- BME interpolation and extrapolation in space and time
- Posterior PDFs generated throughout spatiotemporal grid
- Posterior PDFs fully reflect underlying data no assumed
 Gaussian normal shape non linear estimator generated

Bayesian Maximum Entropy

Varying data types:

Soft data: model output

uncertain historic datasets

Hard data: recent monitoring data (EPA)

Background knowledge

3 clearly defined steps:

Prior: analysis of general data

Meta-prior: separation of available soft data

Posterior: integration of previous data

Bayesian Maximum Entropy

- Prior stage:
 - Produces a general pdf f_G
 - Shaped by constraints
- Meta-prior stage:
 - Soft probabilistic data
 - Soft interval data

- Posterior stage:
 - Update general pdf

- Prior PDF of the form $f_G = e^{\mu_0 + \mu^T g}$
- g refers to the vector of general knowledge equations
- μ_0 and matrix of μ values determined by constraints
- Constraints determined by:
 - Statistical moments (Mean, Covariance, Variogram)
 - Physical laws site knowledge
- Solution to prior pdf:
 - Substitution of unsolved prior pdf equation into general knowledge equations
 - Solve for values of μ_0 and matrix of μ

- Prior knowledge general knowledge equations
- Spatiotemporal random field theory:

• Grid definition:
$$p_{map} = (p_1, p_2, ..., p_m, p_k)$$

• Random variables:
$$x_{map} = (x_1, x_2, ..., x_m, x_k)$$

• Realisations:
$$\chi_{map} = (\chi_1, \chi_2, ..., \chi_m, \chi_k).$$

General knowledge equations:

$$\begin{split} &\overline{h_{\alpha}}(p_{map}) = G_{\alpha}\big[\chi_{map}, p_{map}; \ f_{G}\big] \\ &\overline{h_{\alpha}}(p_{map}) = \overline{g_{\alpha}\big(\chi_{map}\big)}, \qquad \alpha = 0, 1, \dots, N_{c} \\ &\overline{g_{\alpha}\big(\chi_{map}\big)} = \int d\chi_{map} \ g_{\alpha}\left(\chi_{map}\right) f_{G}\big(\chi_{map}; \ p_{map}\big) \end{split}$$

General knowledge equations:

$$\overline{h_{\alpha}}(p_{map}) = G_{\alpha}[\chi_{map}, p_{map}; f_{G}]$$

- \circ h_{α} terms representing statistical moments: mean, covariance, variogram, third order moments of data
- Ist order statistical moment: mean $\bar{x_i}$
- 2nd order statistical moment: covariance $(x_i \overline{x_i})(x_k \overline{x_k})$

$$\overline{g_{\alpha}(x_{map})} = \int d\chi_{map} \ g_{\alpha}(\chi_{map}) f_{G}(\chi_{map}; \ p_{map})$$

- \circ g_{α} a function involving \tilde{a} realisation at the grid point in question
- \circ Realisation corresponding to Ist order moment χ_i
- \circ Realisation corresponding to 2^{nd} order moment χ_i χ_k
- Process repeated for each constraint type at each spatiotemporal grid location

Bayesian Maximum Entropy: Entropy Maximisation

- Entropy = potential information
- Knowledge in prior PDF maximised
- Inverse relation between information content and probability

$$Info_{G}[\chi_{map}] = log\{Prob_{G}[\chi_{map}]\}^{-1} = -log\{Prob_{G}[\chi_{map}]\}$$

- Log scale limits extent of information measure to 10
- Maximisation of following expression:

$$M = -\int d\chi \, f_G(\chi) \log \, f_G(\chi)$$

Expression maximised by solving the Euler Lagrange equation:

$$\frac{\delta(-f_G(\chi)\log f_G(\chi))}{\delta f_G} + \sum\nolimits_{\alpha=0}^{N_G} \mu_\alpha \frac{\delta(g_\alpha(\chi)f_G(\chi))}{\delta f_G} = 0$$

- Empirical results or physical laws add to a priori knowledge
- Can provide additional structure to general knowledge equations
- Soil moisture X and rainfall Y given by:

$$\eta Z_r \frac{\partial}{\partial t} X(p) = -\eta X(p) + \kappa \nabla^2 X(p) + Y(p)$$

• Ist order knowledge equation:

$$\overline{h_1} = \eta Z_r \frac{\partial}{\partial t} \overline{X(p)} \quad \overline{g_1} = \int d\chi (-\eta \chi + \kappa \chi \nabla_s^2) f_G(\chi) + m_y$$

2nd order knowledge equation:

$$\overline{h_2} = \eta Z_r \frac{\partial}{\partial t^{'}} C_x(p, p^{'}) \quad \overline{g_2} = \iint d\chi d\chi^{'} \chi \chi^{\prime} (-\eta + \kappa \nabla_s^2) f_G(\chi, \chi^{\prime}) + \iint d\chi d\psi^{'} \chi \psi^{'} f_G(\chi, \psi^{\prime})$$

Available data: Hard or soft?

Hard data: Parameter values returned

from lab analysis, using the best

current practice

Soft data: His

Historic data (less accurate)

model output data (interval

data), probabilistic data (using

probe measurements)

Bayesian Maximum Entropy & DIVAST

- Depth integrated velocity and solute transport model
- Developed by R.A. Falconer at the University of Bradford, U.K.
- Applicable to shallow well mixed coastal and estuarine water bodies
- 2-D finite difference model
 - Hydrodynamic module:
 - Navier-stokes equations
 - Yields water currents & elevations
 - Water quality & solute transport module:
 - Advection-diffusion equations
 - Salinity, BOD, organic, ammoniacal and nitrate nitrogen, DO, chlorophyll a, organic phosphorus and orthophosphate

Bayesian Maximum Entropy & DIVAST

- General knowledge based prior PDF updated by Bayesian Conditionalisation
- PDF updated at each grid point using soft data from 3-5 adjacent grid points in space and time
- Posterior PDF given by the following:

$$\begin{split} f_{K}^{bc}(\chi_{K}) &= A^{-1} \int_{D} d\Xi_{S}(\chi_{soft}) f_{G}(\chi_{map}) \\ A &= \int_{D} d\Xi_{S}(\chi_{soft}) f_{G}(\chi_{data}) \end{split}$$

See Bayesian Conditionalisation:

$$Prob_{K}\{\chi_{k}|\chi_{data}(S)\} = \frac{Prob_{K}\{\chi_{k} \ and \ \chi_{data}(S)\}}{Prob_{K}\{\chi_{data}(S)\}}$$

Bayesian Maximum Entropy: Spatiotemporal estimates

 BMEmode estimate - most likely value at grid pt. given by:

$$\frac{\delta}{\delta \chi_k} f_K(\chi_k) \big|_{\chi_k = \hat{\chi}_k} = 0$$

 BMEmean estimate – value minimises the mean square estimation error:

$$\hat{\chi}_k = \int d\chi_k \; \chi_k \; f_k(\chi_k)$$

BME: Uncertainty assessment

 Standard deviation of posterior PDF at each location is determined by:

$$\sigma_{k|K}^{bc} = \left[\int d\chi_k (\chi_k - \hat{\chi}_{k,mean})^2 f_K^{bc}(\chi_k) \right]^{1/2}$$

- Limits of confidence interval depend upon desired confidence level (mean+/- 1.96*std for 95% CI)
- CI centred about BME estimate
- Confidence Interval a suitable proxy for uncertainty assessment for monitoring purposes
- Uncertainty assessment of estimates validation soft datasets

- Risk assessment maps
 - Posterior PDFs throughout grid considered
 - Each location graded 0 I
 - 0 no portion of PDF is above elected limit value
 - I entire PDF occurs above the limit value
 - Intermediate values grade depending upon proportion of PDF above limit
 - BME analysis carried out on grades map generated from results.
 - See Modis, K., Vatalis, K., Papantonopoulos, G., Sachanidis, Ch., (2010). Uncertainty management of a hydrogeological data set in a greek lignite basin, using BME. Stoch Environ Res Risk Assess 24:47-56.

• Modis et al. (2010) Risk assessment maps

- "Thick" contour maps
- Contours indicative of:
 - Parameter concentrations
 - Prediction uncertainty
- Map assembled for e.g. 90% Confidence
- Each thick contour a zone which contains points who's confidence interval contains the value of the contour
- Contour thickness indicative of uncertainty
- See Savelieva, E., Demyanov, V., Kanevski, M., Serre, M., Christakos. G., (2005). BME-based uncertainty assessment of the Chernobyl fallout. Geoderma 128:312-324.

• Savelieva et. al. (2005) Caesium 137 "thick" contours

BME: Relevance to monitoring and potential uses

- Estimation at unknown locations/instances
- Rigorously processes sparse datasets of varying quality
- Lowers estimation uncertainty given sufficient soft data
- Most probable value generated
- Mapping:
 - Optimise monitoring programmes
 - Guide advanced monitoring
- Cost of monitoring lowered
- Investigate low cost techniques

In conclusion...

- Limited WQ monitoring programme guidance on design and optimisation
- BME utilises all available data
 - Enhances understanding
 - Optimise monitoring
- BME routines central to objectives
- Thanks to the Irish EPA for funding provided under the STRIVE postgraduate research programme funded under the National Development Program 2007-2013